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ABSTRACT

A brief review of the scale analysis of Lipps and Hemler is given without any reference to the parameters G
and B. The resulting anelastic equations conserve energy, in contrast to the modified anelastic set of equations
analyzed by Durran. In addition, the present equations give an accurate solution for the frequency of gravity
waves in an isothermal atmosphere. The present anelastic equations have these characteristics in common with
the pseudo-incompressible equations introduced by Durran.

The equations obtained from the scale analysis are appropriate for numerical integration of deep convection.
The associated Poisson equation can be solved using standard procedures. For the pseudo-incompressible set
of equations, the Poisson equation is more difficult to solve.

1. Introduction

The recent paper by Durran (1989) has brought on
a renewal of my interest in the scale analysis of Lipps
and Hemler (1982, 1985) for deep moist convection
in the troposphere. One drawback of those studies was
the undue emphasis placed on assigning values for the
constants G and B when the scale analysis can only
infer that these parameters are the order of one. For
this reason, a brief review of the scale analysis for the
deep anelastic equations is given without any reference
to G and B. The results of this scale analysis are then
discussed in the context of the conclusions of Durran
(1989).

A major motivation for this study is to show that
the Lipps and Hemler (1982) set of anelastic equations
are superior to the modified anelastic equations ana-
lyzed by Durran (1989). The latter equations were
originally formulated by Wilhelmson and Ogura
(1972) and have been used by many numerical model-
ers since then. As shown by Durran, the modified an-
elastic equations do not conserve energy and give a
poor representation of the frequency of gravity waves
in an isothermal atmosphere. In contrast, the present
set of equations does conserve energy for adiabatic
frictionless flow. The analysis presented below indicates
that these equations also give an accurate solution for
the frequency of gravity waves in an isothermal at-
mosphere. In these respects the present set of equations
has much in common with the pseudo-incompressible
equations introduced by Durran (1989).
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2. Review of the scale analysis
a. The scale analysis assumptions

A detailed discussion of the scale analysis assump-
tions is given in Lipps and Hemler (1982, hereafter
referred to as LH82). It is not intended to redo the full
discussion in that study but rather to emphasize the
main points. It is hoped that this approach will clarify
the essential elements of the scale analysis. In this dis--
cussion all variables are dimensional.-

The first assumption is that all of the thermodynamic
variables are separated into a base state part and a con-
vective part which is the order of e smaller. In particular,
for the potential temperature 0:

0 = 6o(2) + 0i(x, y, z, t). (1)
Defining 6y as 6,(0) and A8, as the maximum value
of 0,, then ¢ is given by

Af
L=<l (2)
oo
The second assumption is applied to the first law of
thermodynamics, which is written as

do, dby__H
dt v dz CpPoTo (3)
(a) (b) (c)

where H is the net heating introduced by Durran
(1989). For clarity in comparison with his study, the
base state density pg, Exner pressure function 7, and
potential temperature 6, are represented by p, 7 and
6 in his analysis. The three terms in the above equation
are labeled as (a), (b) and (c). In LHS82 the assumption
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(a) ~ (b) is made. For deep moist convection this
assumption implies:
(a) ~ (b) ~ (c). (4)

Using the characteristic length scale / and the velocity
scale W, (a) has the magnitude

d01 ~8 w ]

dar YT
where we have implied that the time scale 7 is equal
to I/ W. Now setting (b) ~ (a) we obtain

1 dao €
b dz 1’ ®)

The equation (6) represents a key conclusion of the
scale analysis in LH82. From a physical point of view,
this relation indicates that the vertical gradient of the
base state 6, is the same order of magnitude as the
vertical (or horizontal) gradient of the disturbance 6, .
Since the length scale / is considered finite, the base
state potential temperature 6, is a slowly varying func-
tion of z as stated in LHS82.

The assumption ¢ < 1 is not sufficient to remove
acoustic waves from the equations of motion. As dis-
cussed by Ogura and Phillips (1962), for the anelastic
equations it is necessary to assume in addition that the
time scale 7 is set by the inverse of the Brunt—Viisild
frequency N. Thus, as given in LH82, this assumption
is represented by

()

& A0r
b0 d

where Af7is the total change in the base state 6p through
the depth d of the troposphere.
Finally it is shown that (6) and (7) together imply

~ nonhydrostatic convection. First, we note the relations
1 db, '
—— ~ N?%/g, 8
b dz /8 (8)

where N2 is defined by (7). Now using (6), (8) and 7

~ N1 we find

r~NT, N*= (7)

=W

gel|W? ~ 1. (9)

Thus (9) is equivalent to the second part of (16) in
LH82. Since the time derivative of vertical velocity is
scaled by W?/I and the buoyancy by ge, it is seen that
these two terms in the w-momentum equation are the
same order of magnitude, implying nonhydrostatic
convection. Thus moist convection on the scales of
mesoa and mesoB (Fujita 1963; Orlanski 1975) is for-
mally excluded from the present scale analysis.

In retrospect, the exclusion of larger-scale hydro-
static, convectively-driven phenomena from this scale
analysis appears unduely restrictive.. A further discus-
sion of this topic will be given in the final section of
this paper.
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b. The continuity equation

In this section the continuity equation in LH82 is
obtained by starting from the more general equation
given by Durran (1989).

The pseudo-incompressible continuity equation is
given by Eq. (7) in his study:

w  dpolo
— 4 V.V = . 10
p000 dz cpPOBOWO ( )
This equation can be written as )
1 dpy 1 dby H
V.-V+ ———+——1= . (10
v (po dz 0() dz c,,p0001r0 ( a)

But from Eq. (3) in the present study we see that this
equation can be simplified to

(10b)

In order to evaluate the relative magnitude of the last
term in (10b), it is compared with the dw/dz com-
ponent of the total divergence V- V. Using (5) to eval-
uate 6,"'d8, / dt we find

aW l d01
az 6o dt

Thus, the last term in (10b) i is small so that to leading
order:

~ W/, ~ (W/])e. (11)

(12)
po az

which is the continuity equation in LH82. Therefore,
this equation can be obtained by starting from (7) in
Durran and applying consistently the LH82 scale anal-
ysis.

To complete the discussion of the continuity equa-
tion, it is relevant to note the magnitude of the
wd(Inpy)/dz term. Using the solution in an isentropic

. atmosphere as a guide

Lo o1
Po dz RH

where H = ¢,000/2 = 30 km and ¢,/R = 2.5. Thus,
calculating the ratio

wd(Inpy)/dz -
ow/oz

(13)

2.5 L

R1= .
H

(14)

Since the length scale / is associated with derivatives,
it is appropriate to think of it in terms of an inverse
wavenumber. If we consider a 10 km deep convective
cell, then / = 10 km/(3.14) is an appropriate length
scale. Since H ~ 30 km, (14) becomes

251
Ry ~ —= == 0.265.

3.14 3 (142)
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Thus, the density gradient term is small but not neg-
ligible compared with dw/az.

¢. The pressure gradient term

A key result of the LH82 scale analysis is that the
vertically varying base state potential temperature 6,
can be pulled inside the pressure gradient term. Using
tensor notation

/

=0 3—:: = - 6ix, (C"peoﬂ'x) + ¢y —d;;—o 6i3.  (15)
For the vertical momentum equation we find that ratio
o 2
Ro= | —2 | ~ LB (g
d(cylom,)/ 0z 0 dz

where the relation (6) has been used to obtain R; ~ e.
Thus, the term involving dfy/dz in (15) can be ne-
glected 1o leading order. For this reason it is appropriate
to define the pressure variable:

(17)

Hence gradients of ¢ correspond to the pressure gra-
dient terms in LHS82.

o= Cp007f| .

3. Energetics

A major consequence of not having 6y(z) as a mul-
tiple of the pressure gradient terms is that energy con-
servation exists for the LH82 equations. Following
Durran (1989) we first consider the two-dimensional
linear perturbation equations for frictionless adiabatic
flow.

%%' %%z 0 (18)
% %=gz—; (19)
%07'+%N02w'¥0 (20)
ag‘)’c”' %ﬂ) @

where (18) and (19) are the momentum equations,
(20) is the thermodynamic equation and (21) is the
continuity equation. Here we have defined

_84d%
00 dZ'

Thus, in general, Ny’ is a function of z whereas N 2as

defined by (7) for the scale analysis is a constant.
The equation for the total perturbation energy can

be obtained in a straightforward manner from (18)-

(21):

N¢ (22)
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OE' odp'u' Jdp'w'
— _ — 0
ot dx 0z _ (23)
where E’ is the total perturbation energy
2 gn2
1 Po 2 12 g 6
== 42—
E =2 (u rwr e L 302) (24)

and p’ = po¢’. It is seen that these equations correspond
to (49) and (51) of Durran (1989). If 8, had been a
multiple of the pressure gradient terms in (18) and
(19), then Durran’s Eq. (52) would have been
obtained, which is similar to (23) but has the term
p'w'dIndy/ dz on the right. This nonconservative term
is not present for the LH82 equations or the pseudo-
incompressible equations. It is, however, present for
the modified anélastic equations as discussed by Dur-
ran. Thus, evidently both Durran’s pseudo-incom-
pressible equations and the LH82 equations eliminate
the energetic inconsistency noted by Wilhelmson and
Ogura (1972).

For three-dimensional finite amplitude flow we find
a form of energy conservation similar to that of Durran.
If the total pressure is defined as p* = poRwobo + pod,
the total energy equation may be written in the con-
servative form:

OF '
at”’ +V-[(Esa+p*)V]=0 (25)
where
fut+ v 4 w? :
ELH = po(——_z—_ + Cp‘ll'oﬂl + gz) + CupoTot‘

(26)

Since ¢,mof; = ¢, T, for the LH82 scale analysis, the
presence of #; comes in through the first-order sensible
heat. In Durran (1989), evidently the effect of 6, comes.
in through the p* gz term in his Eq. (60).

4. Gravity waves in an isothermal atmosphere

In this section the frequency of gravity waves in an
isothermal atmosphere is calculated for the LH82 per-
turbation equations (18)-(21). '

Following Durran, we remove the effect of the de-
crease in density with height by defining the new vari-

ables .
~_(/oo)”2 , ~_(m)”2 ,
g={—1\) u, w=|—] w,
Poo : Poo

N 1/2 3 172
e o I e
Poo poo) Bo

where poo is a constant reference density. In terms of

27)

_these new variables, Egs. (18)-(21) can be written as

~ a~
o, 3 _

o Ox (28)
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%+%§+m=é (29)
‘;—f+ No*Ww = 0 (30)
g—z ‘;—W—Bow=o (31)
where
o= 5 (32)

Comparing with Durran, it is seen that (28)-(31) are
isomorphic with his (33)-(36) when 6, = é, = 0 and
his parameter I' is replaced by 8. Thus, it is evident
that gravity waves described by the above equations
will have many properties in common with gravity

waves obtained from the pseudo-incompressible equa- -

tions (which correspond to 8, = 4, = 0 in Durran’s
analysis).

In the case of an isothermal atmosphere, Ny? and 8,
are constant and solutions may be obtained of the form

(4, w, 8, ¢) = (i1, , 8, ) expli(kx + mz — wt)].
(33)

Since (28)~(31) are isomorphic with Durran’s equa-
tions for the pseudo-incompressible case, it follows that
the frequency is given by Eq. (43) in Durran with T
replaced by B,. Thus, for the LH82 scale analysis
272
w0y = 0k
Tk 4+ m? 4+ Bo?
For the modified anelastic equations Durran found that
w? was complex. In the present case, since energy con-
servation applies to the LH82 equations, w?y is real as
expected.

At this point it is necessary to relate 3, with the pa-
rameters used by Durran for an isothermal atmosphere.
Equation (37) in Durran can be written as

2
P=‘ﬁo+%=ﬁo‘£v’2‘
4 4

s

(34)

(35)

where ¢, is the speed of sound. Using the second equal-
ity in (35) gives

(36)
Now using both equalities in (35), after some algebra,
it can be shown
02 = F2+N02/Cs. (37)
Thus, the equation for wfy becomes
3 N02k2
k*+ m*+ T2+ N?/¢?’

(38)

2
WLH
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Hence the solution for w?y is equivalent to the more
accurate solution in Eq. (42) of Durran, which was
obtained with the effect of sound waves included (4§,
= 1). The Eq. (43) in Durran does not include the
No?/c? term in the denominator. This degree of ac-
curacy of (38) is fortuitous' since the scale analysis of
LHB82 has its primary validity for the troposphere.

It should also be noted that (38) is only slightly more
accurate than Eq. (43) in Durran, which was obtained
from the pseudo-incompressible equations. The max-
imum increase in accuracy in using (38) is for long
waves (k* = 0) and for relatively deep disturbances
in the vertical. Thus, using k2 — 0 and a vertical wave-
length of 10 km, w?y as given by (38) is one percent
smaller than the corresponding value of w? calculated
from Eq. (43) in Durran. This conclusion is consistent
with the discussion given by Durran in comparing the
solutions from his Eq. (42) and (43).

.5. Summary and conclusions

A review of the scale analysis of LH82 for deep moist
convection in the troposphere has been presented. In
this scale analysis all thermodynamic variables are sep-
arated into a base state part and a convective part which
is the order of e smaller. It is assumed that ¢ < 1. The
second assumption, which appears to be the unique
aspect of LHS82, is that the first two terms in the ther-
modynamic equation (3) are the same order of mag-
nitude. It is this assumption which leads to the con-
clusion that the base state potential temperature 6, is
a slowly varying function of z.

The continuity equation ( 12) is obtained from Dur-
ran’s more general form of continuity by a consistent
use of the LHS82 scale analysis. In addition, by applying
the second assumption, it is shown that the height-
dependent 6, can be put inside the pressure gradient
terms. When written in this form, the LH82 set of
equations conserve energy, thus eliminating the ener-
getic inconsistency noted by Wilhelmson and Ogura
(1972). The energy conservation properties of the
LHR&2 equations and the pseudo-incompressible equa-
tions of Durran (1989) appear to be very similar.

Since the present scale analysis is based on the as-
sumption that the horizontal and vertical length scales
are the same, it was found that the convection is non-
hydrostatic. In retrospect this conclusion appears overly
restrictive. When the flow is hydrostatic, the horizontal
length scale /, is much greater than the vertical length
scale /,, which is roughly equivalent in magnitude to
the present length scale /. Thus, making the second
assumption, we can again derive (6) but with / replaced
by /.. The argument for putting the height dependent
o inside the pressure gradient terms follows as before
with the resultant conservation of energy. For hydro-

' If sound waves are included in (28)~(31), then (38) contains
an extra Ny?/cg? term in the denominator.
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static flow with /, > [, the time scale 7 for internal
gravity waves is obtained from (38) with k2 < m?2.
Since the term I'2 + N2/ ¢ in the denominator of (38)
is very small, we find 7 ~ (Nk) 'mor r ~ NI, l,"" as
the required condition that acoustic waves be excluded.
The resultant large time scale (low frequency) is con-

sistent with the flow being hydrostatic. Thus it appears-

that, with a slight generalization of the discussion, the
~ present scale analysis equations are valid for hydrostatic
dynamics as well.

An important conclusion of this study is that the
. LHB82 anelastic equations have characteristics superior
to the modified anelastic equations analyzed by Durran
(1989). The modified anelastic equations give complex
frequencies for gravity waves in an isothermal atmo-
sphere. This result is physically unrealistic and is as-
sociated with the lack of energy conservation for these
equations. In contrast, the LH82 equations conserve
energy and give accurate real frequencies for such in-
ternal gravity waves.

The above results indicate that the L H82 anelastic

equations have much in common with the pseudo-

incompressible equations introduced by Durran
(1989). An advantage of the latter equations is that
the pseudo-incompressible equations are valid over the
total atmosphere whereas the LH82 equations are rig-
. orously valid only in the troposphere. The assumption,
" given by Eq. (6), that 6, is a slowly varying function
of z is highly suspect for the stratosphere. In spite of
this shortcoming, the present analysis suggests that
gravity waves in, the stratosphere are adequately rep-
resented by the LHS82 equations.
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Thus the LH82 anelastic equations are appropriate
for numerical integration of deep convection. The as-
sociated Poisson equation can be solved using standard
procedures. In contrast, there are difficulties involved
in solving the Poisson equation for the pseudo-incom-
pressible system (Durran 1989). Thus the latter equa-
tions have the advantage of a rigorous formulation for
the stratosphere but present more difficulty in numer-
ical integration.
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